Aminopropyltriethoxysilane-mediated surface functionalization of hydroxyapatite nanoparticles: synthesis, characterization, and in vitro toxicity assay

نویسندگان

  • Shige Wang
  • Shihui Wen
  • Mingwu Shen
  • Rui Guo
  • Xueyan Cao
  • Jianhua Wang
  • Xiangyang Shi
چکیده

BACKGROUND We report on aminopropyltriethoxysilane (APTS)-mediated surface modification of nanohydroxyapatite with different surface functional groups for potential biomedical applications. In this study, nanohydroxyapatite covalently linked with APTS (n-HA-APTS) was reacted with acetic anhydride or succinic anhydride to produce neutralized (n-HA-APTS. Ac) or negatively charged (n-HA-APTS.SAH) nanohydroxyapatite, respectively. Nanohydroxyapatite formed with amine, acetyl, and carboxyl groups was extensively characterized using Fourier transform infrared spectroscopy, transmission electron microscopy, (1)H nuclear magnetic resonance spectroscopy, X-ray diffraction, inductively coupled plasma-atomic emission spectroscopy, and zeta potential measurements. RESULTS In vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay revealed that the slight toxicity of the amine-functionalized n-HA-APTS could be eliminated by post-functionalization of APTS amines to form acetyl and carboxyl groups. Blood compatibility assessment demonstrated that the negligible hemolytic activity of the pristine nanohydroxyapatite particles did not appreciably change after APTS-mediated surface functionalization. CONCLUSION APTS-mediated functionalization of nanohydroxyapatite with different surface groups may be useful for further functionalization of nanohydroxyapatite with biologically active materials, thereby providing possibilities for a broad range of biomedical applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Silicon-substituted hydroxyapatite nanocomposite: Synthesis, characterization and in vitro bioactivity study in Human Serum Albumin

Nano hydroxyapatite and Silicon-substituted hydroxyapatite nanocomposites with various amount of Si contents (0, 2, 4 and 6 mole % as named as HS0, HS2, HS4 and HS6) were prepared via in situ hybridization method and were analyzed by XRD, FTIR, SEM and AFM techniques. Size distribution of the products demonstrated that hydroxyapatite particles size was between 2 and 53.5 nm with further mean si...

متن کامل

Analytical methods for nanomaterial characterization

In recent years, it has become evident that it is necessary to systematically and accurately define particle characteristics in order to understand the potential toxicity of nanoparticles to biological systems. The properties that need to be emphasized are size, shape, dispersion, doping, aggregation, functionalization, physical and chemical properties, surface area, and surface chemistry. Rout...

متن کامل

Analytical methods for nanomaterial characterization

In recent years, it has become evident that it is necessary to systematically and accurately define particle characteristics in order to understand the potential toxicity of nanoparticles to biological systems. The properties that need to be emphasized are size, shape, dispersion, doping, aggregation, functionalization, physical and chemical properties, surface area, and surface chemistry. Rout...

متن کامل

Synthesis, characterization and biocompatibility evaluation of hydroxyapatite - gelatin polyLactic acid ternary nanocomposite

Objective(s): The current study reports the production and biocompatibility evaluation of a ternary nanocomposite consisting of HA, PLA, and gelatin for biomedical application.Materials and Methods: Hydroxyapatite nanopowder (HA: Ca10(PO4)6(OH)2) was produced by burning the bovine cortical bone within the temperature range of 350-450 oC followed by heating in an oven at 800. Synthesis of the te...

متن کامل

Synthesis and Functionalization of Gold Nanoparticles by Using of Poly Functional Amino Acids

Synthesis and characterization of two functionalized gold nanoparticles by using of two poly functional amino acids (L-Arginine and L-Aspartic acid) are reported. The gold nanoparticles were reduced by sodium citrate and functionalized with L-Arginine at the pH of 7 and 11 and L-Aspartic acid at the pH of 7. Transmission electron microscopy, UV-Vis spectroscopy, dynamic light scattering, zeta p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011